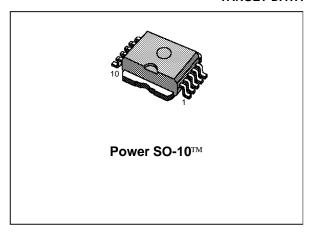


VN370SP

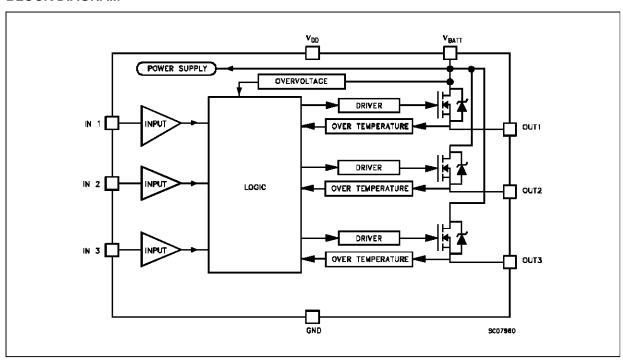
TRIPLE CHANNEL HIGH SIDE SMART POWER SOLID STATE RELAY


TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	lout	channel
VN370SP	60V	0.25 Ω	1 A	1
	60V	1.7 Ω	0.3A	2
	60V	1.7 Ω	0.3A	3

- ONE 2.4A (MAX) CHANNEL
- TWO 0.36A (MAX) CHANNELS
- THREE TTL INPUTS
- OVER VOLTAGE SHUTDOWN
- INDEPENDENT THERMAL SHUTDOWN FOR EACH CHANNEL
- CURRENT LIMITER ON EACH CHANNEL
- VERY LOW STAND-BY POWER DISSIPATION

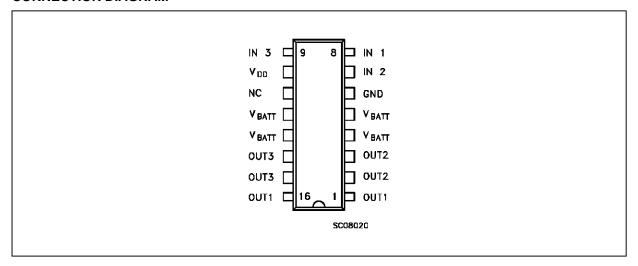
DESCRIPTION


The VN370SP is a monolithic device made using SGS-THOMSON Vertical Intelligent Power Technology, intended for driving three indipedent resistive or inductive loads with one side connected to ground.

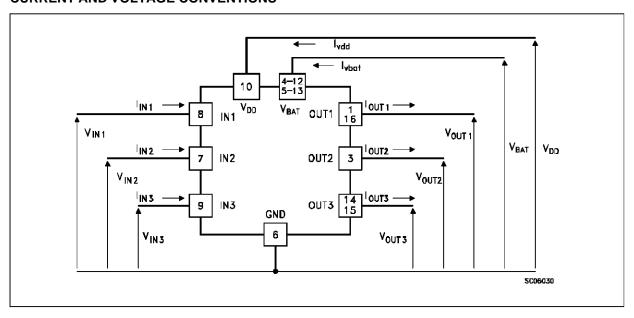
The input control are TTL compatible. Overvoltage shutdown protect the loads against voltage surges on the supply line.

Three independant current limiters and thermal shutdown protect the chip in over temperature or short circuit conditions.

BLOCK DIAGRAM



October 1994 1/8


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	60	V
-Vcc	Reverse Supply Voltage	-4	V
ΙL	Maximum DC Load Current	Internally Limited	Α
I _R	Reverse Output Current Per Channel	-7	Α
I _{IN}	Input Current (INPUTn)	±10	mA
V _{ESD1}	Electrostatic Discharge (1.5 kΩ, 100 pF)	4000	V
P _{tot}	Power Dissipation at $T_c \le 25$ °C	Internally Limited	W
Tj	Junction Operating Temperature	-40 to 150	°C
T _{stg}	Storage Temperature	-55 to 150	°C

CONNECTION DIAGRAM

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

R _{thj-case1}	Thermal	Resistance	Junction-case (Channel 1)	Max	5	°C/W	
R _{thj-case2}	Thermal	Resistance	Junction-case (Channel 2)	Max	30	°C/W	
R _{thj-amb}	Thermal	Resistance	Junction-ambient (Channel 1) (\$)	Max	36	°C/W	
R _{thj-amb}	Thermal	Resistance	Junction-ambient (Channel 2) (\$)	Max	60	°C/W	

ELECTRICAL CHARACTERISTICS $(10V < V_{BAT} < 16V; -40^{\circ}C < T_{case} < 125^{\circ}C; 4.75V < V_{DD} < 5.25V;$ unless otherwise specified) **POWER**

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage		7	13	24	V
R _{on1}	On State Resistance (Channel 1)	$I_{OUT1} = 1 \text{ A}$ $I_{OUT}1 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$		0.2	0.5 0.25	Ω
R _{on2}	On State Resistance (Channel 2)	$I_{OUT2} = 0.3 \text{ A}$ $I_{OUT2} = 0.3 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$		1.4	3.3 1.7	Ω Ω
R _{on3}	On State Resistance (Channel 3)	$I_{OUT3} = 0.3 \text{ A}$ $I_{OUT3} = 0.3 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$		1.4	3.3 1.7	Ω Ω
I _{bs}	Supply Current from V _{bat} pin				50 50	μA mA
l _{ds}	Supply Current from V _{DD} pin				5	mA
I _{IS}	Output Leakage Current	V _{SW1} = V _{SW2} = V _{SW3} = 0V, current measured between OUT1 or OUT2 or OUT3 and GND	-50		50	μА
V _{dem1}	Channel 1 Output Demagnetization Voltage	$I_{out1} = 1 \text{ A}$ $L_{LOAD} = 1 \text{ mH}$ $T_c = 25 ^{\circ}\text{C}$	-24	-20	-16	V
V _{dem2}	Channel 2 and Channel 3 Output Demagnetization Voltage	I_{out2} or $I_{out2} = 0.3$ A $I_{LOAD} = 1$ mH $I_{c} = 25$ °C	-24	-20	-16	V

SWITCHING

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time (Chan. 1, 2, 3)	$I_{OUT} = I_n$, Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C			50	μs
t _r	Rise Time Of Output Current (Chan. 1, 2, 3)	$I_{OUT} = I_n$, Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C			50	μs
t _{d(off)}	Turn-off Delay Time (Chan. 1, 2, 3)	$I_{OUT} = I_n$, Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C			100	μs
tf	Fall Time Of Output Current (Chan. 1, 2, 3)	$I_{OUT} = I_n$, Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C			50	μs

⁽¹⁾ All channels ON (\$) When mounted using minimum recommended pad size on FR-4 board

ELECTRICAL CHARACTERISTICS (continued)

LOGIC INPUT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input Low Level Voltage				0.8	٧
V _{IH}	Input High Level Voltage		2		(*)	V
V _{I(hyst.)}	Input Hysteresis Voltage			0.5		٧
I _{IN}	Input Current	V _{IN(X)} = 5.5 V V _{BAT} = 14 V	-10		10	μΑ
V _{ICL}	Input Clamp Voltage	$I_{IN(X)} = 10 \text{ mA}$ $I_{IN(X)} = -10 \text{ mA}$	8	9.5 -0.7	11	V V

PROTECTION AND DIAGNOSTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ov}	Over Voltage Shut-down	(see fig. 1)	24	27	30	V
I _{LIM1}	Current Limit (Channel 1)	R_{L1} = 500 m Ω	2.3		4.4	А
I _{LIM2}	Current Limit (Channel 2 and Channel 3)	$R_{L2,3} = 500 \text{ m}\Omega$	0.36		0.72	А
lblg	Leakage Current From V _{BAT} When GND pin is Open	$\begin{array}{ll} R_{L1} = 16~\Omega & R_{L2} = 53~\Omega \\ R_{L3} = 80~\Omega & GND ~pin~is~open \end{array}$	-10		10	mA
T _{TSD1}	Thermal Shut-down Temperature (Chan. 1)		150	170	190	°C
T _{R1}	Thermal Reset Temperature (Chan. 1)		120			°C
T _{TSD2}	Thermal Shut-down Temperature (Chan. 2 and 3)		140	160	180	°C
T _{R2}	Thermal Reset Temperature (Chan. 2 and 3)	out. It is possible to copped the input pine to	130			°C

^(*) The V_{IH} is internally clamped at 9.5V about. It is possible to connect the input pins to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.

(•) Status determination > 100 μs after the switching edge.

TRUTH TABLE

	IN1	OUT1	IN2	OUT2	IN3	OUT3
Normal Operation	L H	L H	L H	L H	L H	ПП
Over-Voltage	L H	L L	L H	L L	L H	
Thermal Shutdown Channel 1	L H	L L	L H	L L	L H	L L
Thermal Shutdown Channel 2	L H	L H	L H	L L	L H	H
Thermal Shutdown Channel 3	L H	L H	L H	L H	L H	L L

FUNCTIONAL DESCRIPTION

The device integrates one high current channel (1A nominal current) and two identical low current channels (0.3A). Each of these three channels is independently controlled by TTL compatible input pin IN1 to IN3 and drives a resistive or inductive load in high side configuration.

When any channel switches off an unclamped inductive load, the relevant output voltage is clamped to typically -20V.

The device is powered both from a battery input therminal V_{BAT} and from a supply input therminal V_{DD} .

 V_{DD} terminal should be connected to a 5V $\pm 5\%$ supply while V_{BAT} terminal is connected to the car battery line through a (L=40mH, C=4000 μ F) filter. An antiparallel diode ahead of the LC filter clamps the negative voltage on V_{BAT} terminal to -0.8V typ for channel 1 and 0.5A typ. for channel 2 and channel 3.

When channel 2 or channel 3 is overloaded, so that the relevant power output junction temperature reaches 160 °C typ, the overladed output shuts down and restarts automatically when the power output temperature has cooled down to 130 °C. The other channels remain unaffected.

If channel 1 is overloaded, so that power output 1 junction temperature reaches 170 °C typ, the three channels shut down and restart automatically when the power output1 temperature has cooled down to 120 °C.

if VBAT terminal voltage ingrases abobe 27V typ, all outputs shut down and restart again when VBAT voltage has decreased below 27V.

If GND terminal is opened, all outputs shut down whatever the state of IN1, IN2 and IN3 provided no pin voltage exceed 16 V with respect to the loads negative terminal.

SWITCHING PARAMETERS TEST CONDITIONS

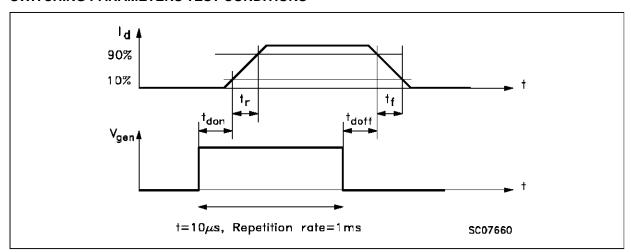
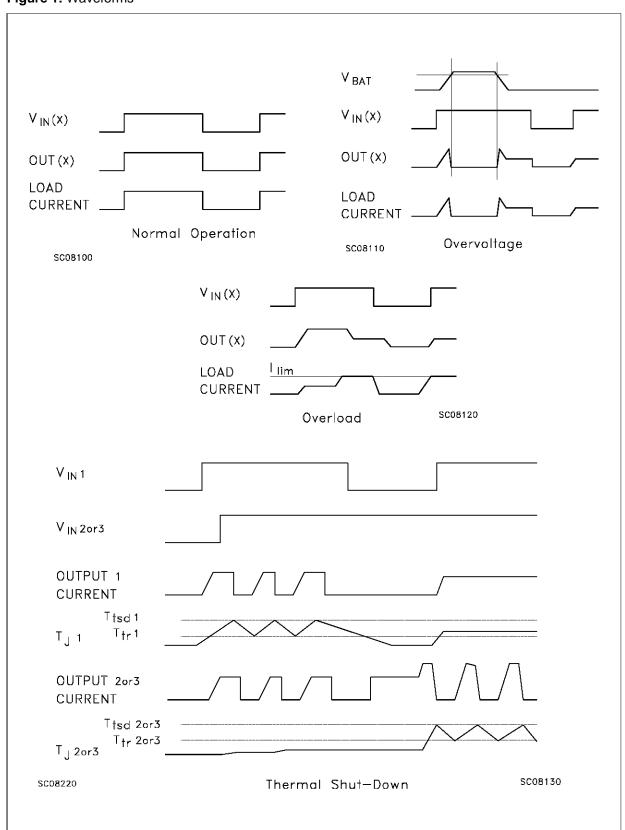
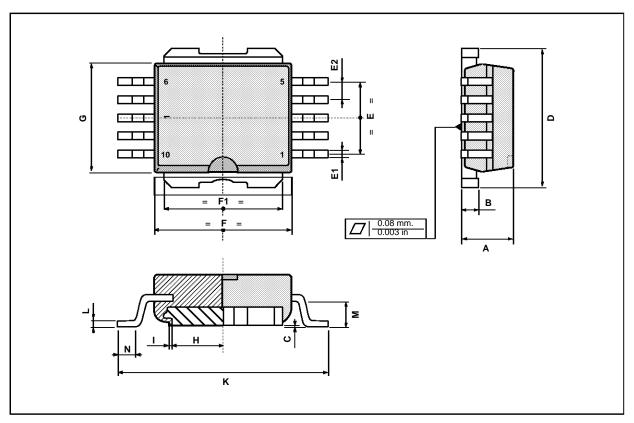




Figure 1: Waveforms

Power SO-10 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	3.45	3.5	3.55	0.135	0.137	0.140
В		1.28	1.30		0.050	0.051
С			0.15			0.006
D	9.40	9.50	9.60	0.370	0.374	0.378
Е	4.98	5.08	5.48	0.196	0.200	0.216
E1	0.40	0.45	0.60	0.016	0.018	0.024
E2	1.17	1.27	1.37	0.046	0.050	0.054
F	9.30	9.40	9.50	0.366	0.370	0.374
F1	7.95	8.00	8.15	0.313	0.315	0.321
G	7.40	7.50	7.60	0.291	0.295	0.299
Н	6.80	6.90	7.00	0.267	0.417	0.421
I		0.10			0.004	
K	13.80	14.10	14.40	0.543	0.555	0.567
L		0.40	0.50		0.016	0.020
М	1.60	1.67	1.80	0.063	0.066	0.071
N	0.60	0.08	1.00	0.024	0.031	0.039

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

